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This paper describes a novel procedure to generate continuously differentiable optimal flight trajectories in the
presence of arbitrarily shaped no-fly zones and obstacles having a fixed position in time. The operational flight
scenario is first discretized with a finite dimensional grid of positions-directions pairs. A weighted and oriented graph
is then defined for which the nodes are the earlier mentioned grid points and for which the arcs correspond to
minimum length trajectories compliant with obstacle avoidance constraints. Arcs are obtained via solving convex
quadratic programming optimization problems that can also account for geometrical constraints such as trajectory
curvature limitations. The problem of finding an optimal trajectory be tween two nodes of the so-called core paths
graph is then solved via a minimum cost path search algorithm. In a real-time application perspective, the generation
of the core paths graph is computationally cuambersome. Moreover, the aircraft position and direction rarely
coincide with one of the graph nodes. However, if the graph is built offline and stored, the definition of an optimal
trajectory connecting any points of the space domain requires a reduced computational effort. The particular case of
piecewise polynomial trajectories minimizing a flight path’s length, compliant with constraints on curvature and
flight-path angles, is fully developed. Two- and three-dimensional examples are discussed to show the applicability

as well as the effectiveness of the technique.

Nomenclature

C(Og, i 2 = cost related to the admissible flight
trajectory 6y, r,

dy () Euclidean distance function on R”

d () = metric on R” for the position vectors

d"(-,-) = metric on R” for the velocity vectors

E(t) =[s(t),s(t)] = pair of position and tangent on the
s curve

E; = (s;,5p) = pair of position and tangent at the
trajectory ending point

E; = (s;,5;) pair of position s; and direction s; vectors

Ey = (59, Sp) = pair of position and tangent at the
trajectory starting point

fs(0) = value of the parameterized trajectory
function in ¢

K ﬁl'z = X-flight controllability set to E,

Ncpg = set of CPG nodes

s(1) = value of the trajectory function in ¢

s(+) = trajectory function

TAE = optimal A-connection set

t = independent parameter for the s()
trajectory curve definition

position vector on the trajectory curve
trajectory ending point position vector
trajectory starting point position vector

operational space

(x(1), (1), 2(1))
(x(tf)v y(tf)’ Z(tj'))
(Ax(fo), y(t9). 2(t))

8 = parameter vector used for the finite
dimensional parameterization of the
trajectory segments

JaA = boundary of the operational space
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®§0> E = set of admissible flight trajectories from
E() to Ef in A

@éfEf = set of X-admissible flight trajectories
from Ej, to E;in A

k.., = admissible flight trajectory between
E, and E;

) ﬁ;z = X-flight reachability set from E|

2 = set of flight trajectory properties

Yerg = set of CPG arcs

= set of § parameters

1. Introduction

IVIL and military flight missions require a careful resources
optimization to maximize efficiency and effectiveness, as well
as to reduce risks and operating costs. To this end, the definition
of an optimal flight trajectory consistent with mission objectives,
operational scenario, as well as vehicles dynamics and performance,
certainly plays an important role. Objectives are often specified in
terms of regions to fly over, desired flight altitudes on targets, and
definition of possible loads to be released on targets. The operational
scenario provides different constraints depending on takeoff and
landing zones, the presence of no-fly zones or high risk zones, the
presence of mountains or adverse flight conditions, minimum/
maximum distance from base stations or possible cooperating
vehicles. Finally, constraints related to the specific aircraft used can
include maximum climb angles/rates, maximum and minimum
speed, minimum turning radius, flight range, and endurance.
During the last decades much work has been carried out on the
trajectory optimization problem for flying, marine, and terrestrial
vehicles. The variational formulation is probably the most natural
and rigorous one for this class of problems. However, the possibility
to solve complex problems with variational methods is very poor.
Many papers deal with direct and indirect numerical methods based
on the solution of a nonlinear programming (NLP) problem [1-9].
Indirect methods try to satisfy optimality necessary conditions
deriving from the application of the Pontryagin’s maximum
principle. Direct methods are based on the discretization of state and
input variables sets to convert the functional problem into a NLP
problem. Unfortunately NLP turns out to be quite burdensome for
many practical applications.


http://dx.doi.org/10.2514/1.45161

MATTEI AND BLASI 455

RADAR
DETECTABLE
AREA

LI _Flight Altitude

MOUNTAIN

Fig. 1 Flight trajectory in the presence of mission constraints.

By means of some approximation, feasible trajectories can be
generated following a purely geometrical approach, based on topo-
logical techniques creating a sequence of way points. This sequence
can derive from probabilistic or potential methods [10-12] which are
very popular in mobile robotics applications [13]. In the same field,
several papers deal with inverse kinematics based approaches for
holonomic and nonholonomic systems accounting for obstacle
avoidance and energy minimization [14]. Geometrical approaches
have been proposed for the generation of flight trajectories using
circular arcs combined with straight connection paths [15,16]. A
method for generating up to 4-D trajectories has been recently
proposed in [17].

More sophisticated approaches take into account flight dynamics
[18-22]: some of them are based on the so-called motion primitives,
i.e., the trajectory is modeled as a sequence of trim conditions and
maneuvers; others are based on a trajectory smoothing. With higher
computational effort, it is possible to apply model-based predictive
techniques also dealing with constraint on states/inputs [23-25].
Under simplifying assumptions, the predictive problem can be for-
mulated in terms of mixed integer linear programming (MILP)
problems that can be efficiently solved with branch and bound
methods. MILP allows the inclusion of logical expressions into the
optimization process to model decision making.

Because of the complexity and variety of the problem, the use
of nonconventional nature-inspired optimization techniques has
also been investigated. The literature reports examples of hybrid soft
computing and genetic techniques applied to the definition of space
and atmospheric vehicle trajectories [26-29].

This paper deals with the generation of optimal flight trajectories
compliant with mission constraints resulting from no-fly zones or
obstacles (see Fig. 1). A no-fly zone is an area which aircraft are
not permitted to fly over, due to the presence of military restrictions
(e.g., armed enemies, radar detectability) or civil restrictions
mainly due to safety reasons (e.g., densely populated areas, adverse
weather conditions zones). Mountains and buildings are examples of
obstacles within natural and urban environments, respectively.

Constraints on flight paths, turn radius, climb, and descent angles
are also taken into account in the proposed algorithm. The trajectory
optimization problem is converted into a minimum cost path search
within a weighted and oriented graph for which the arcs and weights
are obtained via solving convex quadratic programming optimi-
zation problems. A core paths graph (CPG), containing a discrete set
of admissible connection paths, is first generated. Once the graph is
available, the proposed procedure allows defining an optimal tra-
jectory connecting any points of the space domain other than CPG
nodes with a reduced computational effort.

The particular case of piecewise polynomial trajectories
minimizing a flight path’s length is fully developed. Two- and three-

dimensional examples are discussed to show the applicability as
well as the effectiveness of the proposed technique. The possibility
of having a feedback real-time implementation of the trajectory
generation algorithm is also discussed.

The paper is organized as follows. In Sec. II the flight trajectory
optimization problem within a constrained environment is precisely
stated. Sec. III describes the proposed CPG algorithm. The case of
piecewise polynomial flight trajectories is developed in Sec. IV.
Numerical examples in 2-D and 3-D spaces are discussed in Sec. IV.
Some conclusions are finally drawn.

II. Mathematical Problem Formulation

Let us consider a space domain A € R”, possibly nonconnected,
in 2-D or 3-D (n = 2 or 3) for which the boundary dA is determined
by the presence of no-fly zones and obstacles (see Fig. 2). A
parametric curve s(-): ¢ € [ty, 1] = s(1) = (x(1), y(1), 2(1))" € Ais
defining a trajectory segment in A, where ¢ is the independent
parameter, (x,y,z)” is the vector of space coordinates in a given
Cartesian reference system, and (x(fy), y(¢y), z(¢,))T and
(x(t), y(t7), 2(t;))" are the starting and ending points of the
segment, respectively. With E(7) = (s(f), $(7)) we denote the pair of
position and tangent (§ = ds/dr) to the trajectory at ¢t = 7. With a
slight abuse of notation E, = (s;,$;), k=1,...,N, denotes an
element of a discrete set of position-direction pairs in the operational
domain. (s, 5o) and (s, § ) denotes the point-tangent pairs of a flight
trajectory segment at the starting and ending points, respectively.

&& "JONE

Fig. 2 Example of 2-D A-space, dA = dA; U9dA, U dA;-boundary,
and A-admissible trajectory connecting discrete points E; = (s;, §;) to
E; = (5;,5;) [s; =s(t),5; =5(),s; =stp),$; =s@)]-
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Definition 1 (flight trajectory): A flight trajectory from E, =
(59, 89) to E;=(sz,$¢) in A is a continuously differentiable
parametric oriented curve QEg,Ef in the independent variable ¢,
connecting s, to s with assigned first derivatives (tangents) s, and s
at the extremes:

9E0~Ef & {9() € C[lto,tf]: s(to) = o, s(tf) =Sf 5(to)

=G, $(1) = 3| (M

Definition 2 (A-compatibility): A pair of position-direction

vectors E; = (s;, §;) is A-compatible if there exists an & > 0 such that
s;+as; € A,V ael0,).

Definition 3 (flight trajectory admissibility in A): A flight
trajectory connecting A-compatible Ej, and E is admissible in A if it
is fully contained in A V t € [t, t7]. The set of admissible flight
trajectories from Ej to E, in A is denoted as

©p . 2 {eEU,Ej: s eA ¥ i1elt, zf]} 2)

It is obvious by definition that admissible flight trajectories are
composed of E(t), which are A-compatible V ¢ € [t,, t/].

A more restrictive definition of admissibility is needed for next
developments.

Definition 4 (flight trajectory X-admissibility in A): Given a set X
of desired flight trajectory properties and two A-compatible E, and
Ey, a flight trajectory is X.-admissible in A if it is admissible and
satisfies X properties. The set of X-admissible flight trajectories from
Ej to E; in A is denoted as

A -
@ﬁfEf = {QEO,Ef € G)én,Ef: S{io.r,)(+) satisfies E} 3)

Examples of flight trajectory properties that will be used in the
numerical examples are:

1) X: bounds on the second derivatives; |§(r)| < §V t € [ty, t/].
This property is used to limit the trajectories curvature radius.

2) %,: bounds on the distance between s, and s,; d'(s¢, 57) < d,
d'(-,-) being a metric on R".

3) X5: bounds on the difference between §, and § 45 d” (8, §7) < d,
d" (-, ) being a metric on R".

4) %, finite dimensional parameterization of the trajectory
segments curves; s(f) = f5(f) depends on a parameter vector
8 € Q € RP. Polynomials are examples of possible families of
connecting curves.

Compliance with X properties may compromise the possibility of
reaching one point of the space from any another.

Definition 5 (X-flight controllability and reachability): Given two
A-compatible E; and E,, E is X-flight controllable to £, in A (and
conversely E, is X-flight reachable from E,) if @él‘ f‘:Ez is a nonempty
set. The set of all the E; ¥-flight controllable (X-flight reachable) to
(from) E| is called X-flight controllability (X-flight reachability) set
to (from) E; and is denoted by K @f © ﬁl‘z).

Finally, a cost related to admissible flight trajectories GEU-Ef is
defined. This can be computed on the basis of a nonnegative function:

C(): b, € O, = COg,x,) € RS €5

Cost functions can depend on the path length, flight altitude, fuel
consumption, risk for the aircraft or for the people under the flying
area, radar detectability, distance from fixed or mobile base stations,
or any other variable concerning the specific flight mission. They are
generally integral functions with possible terminal costs having the
following structure

Clp,,) = / 7 Gs. 5.5, 0dt + By(s(1). (1)) 1) (5)

We can now precisely state the flight trajectory optimization
problem for which the solution is the main objective of the paper.

Problem 1: (search of the optimal flight trajectory
connecting E to E): Given a space domain A, a set % of desired
properties, two A-compatible £ and E ;, with E, X-flightcontrollable
to E;, and a cost function C(-), find the X-admissible optimal
(minimum cost) flight trajectory 0%, E € @20‘?:5/ solving the following
minimization problem:

min C(GEO_Ef) (6)

AT
91:'0#’/ e()EO.E/

The optimal flight trajectory connecting E; to E is then defined as

QZO.Ef =arg rninA s C(¥k, k,) @)

Eg.Efp € TEO-Ef

The optimization problem (6) is generally complex to be solved;
(~)§(ij is an infinite dimensional space, the cost function can be
nonlinear and nonconvex, and also mathematical constraints implied
by Og, & . € @ﬁo‘f‘:E/ are generally nonlinear and nonconvex.

The following definition helps identify the entire flight con-
nectivity of A space.

Definition 6 (optimal A-connections set). The set of all the -
admissible optimal flight trajectories connecting each A-compatible
E to each other is called the optimal A-connections set:

A

TAZ & W?;,,E, =arg minAZ C(GE,,E,): V E; and

£, €O,k
E; A — compatible} 8)

It is worth notice that, given a target point E, the knowledge of
T2% would in principle allow the optimal flight trajectory to be
expressed E rasa feedback control law because, at each time instant,
the optimal trajectory to E, can be extracted from TA%, assuming
that £; = E; and E; is equal to the current measured E = (s, 5).

III. Core Paths Graph Algorithm

A number of assumptions and approximations are now introduced
to convert the minimum search problem (6), arising in problem 1,
into a minimum cost path search over a graph.

Definition 7 (A-core paths graph): A A-CPG is a discrete
approximation of the optimal A-connections set. Nodes are
obtained choosing a suitable N-ple of A-compatible E;. Arcs are
Y-admissible optimal flight trajectories connecting nodes. Ncpg
and Ycpg denote the sets of CPG nodes and arcs, respectively, (see
Fig. 3).

It is worth notice that CPG generation is strongly affected by the
following choices:

1) Number and position of A-compatible E; = (s;, §;) composing
Nepg.

2) ¥ properties including a possible parameterization of the
Y-admissible curves (X, property).

[ E;

G:K)

LK)

Fig. 3 Trajectories composing a CPG with 3 nodes (E;, E;, E;) and
6 arcs [(i,)), (G, k), (k,1),, (k,)), (1), (j, k) flight trajectories].
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3) Cost function for the definition of optimal trajectories.

Depending on X properties, each node is not necessarily X-flight
reachable from each other. This implies that CPG can be non-
complete (i.e., a simple graph in which not every pair of distinct
nodes is connected by an arc). Noncompleteness can be desirable in
practice because it causes a reduction of the computational burden
related to calculations on graphs.

If X, property is required, trajectory curves are forced to depend
on a finite dimensional parameter vector §:

05, (8) 2 {s(0) = f3(0): 1 € [t, /). 5 € @
C RP,E(ty) = Eo, E(t;) = E;} 9

where 2 is the set of parameters ensuring X-admissible flight
trajectories:

Q2 56,0 083 | (10)

With this parameterization the infinite dimensional problem (6) is
converted into a finite dimensional one, and the calculation of CPG
weights W; ; is obtained via solving the following problem

W= I(}]lélC(GZ—E (8)) VY E; € Nceg
S i
V E;X-flight reachable from E; (11)

Convexity properties and nonlinearities of problem (11) depend on
choices (1-3). Examples are discussed in the next section in the light
of the proposed practical problems.

Once a CPG has been built, the optimal flight trajectory between
two nodes of the graph can be readily calculated by using one of the
minimum cost path search algorithms available in the literature:
Dijkstra’s algorithm is the most popular algorithm solving the shortest
path problem in the presence of nonnegative arc path costs [30].

To compute optimal flight trajectories between points E, =
(s9.S9) and E; = (s;,s;) which do not belong to the CPG, an
enlargement of the CPG to include these points in Ncpg is first
required. New arcs connecting Ej to its X-flight controllability set on
Ncpg and new arcs connecting E to its X-flight reachability set on
Ncpg must then be added to Yepg.-

The following algorithm to compute flight trajectories connecting
two points of the operational space with assigned flight directions is
composed of an offline and an online part. In the offline part the
flight connectivity on the CPG is determined. The online part
assumes that a measurement of the position and velocity vector of
the aircraft is available and that a target position and direction is
assigned; it computes optimal connections of these two pairs of
velocity and direction with the CPG; it finally solves the minimum
cost path search problem on the enlarged CPG.

The possibility of implementing the proposed procedure in real
time depends on how fast the online part of the algorithm can be
performed compared with the control system sampling period. It is
possible to evaluate an upper bound on computational times for both
the CPG enlargement and the shortest path calculation on graph. This
guarantees a finite-time response of the procedure.

A. Core-Paths-Graph Trajectory Optimization Algorithm:
Offline Calculations and CPG Computation

1) Choose N suitable E; = (s;, §;), i.e., the Npg set of nodes.
A simple criterion can be a uniform distribution of points and
directions with increased density in the neighborhood of obstacles
and no-fly zones and in the regions in which the largest changes in
flight direction are expected. An incremental procedure to evaluate
the benefit due to the addition of more nodes can be readily
implemented.

2) Choose a cost function related to path length, flight altitude, fuel
consumption, risk, radar detectability, distance from fixed or mobile
base stations. Build the Ypg set of arcs; connect each node E; to each
E; which is X-flight reachable from E; solving problem (11). Store
graph weights into a sparse matrix.

B. Core-Paths-Graph Trajectory Optimization Algorithm:
Online Calculations

1) For inclusion of a (possibly time varying) terminal point £, (if
E; ¢ Ncpg), enlarge CPG including node E; and arcs connecting
each X-flight controllable node E; € Nepg to Ey.

2) For inclusion of a (possibly measured) starting point E (if
E ¢ Ncpg), enlarge CPG including node E (pair of measured position
and velocity vectors) and arcs connecting every X-flight reachable
node E; € Ncpg from E.

3) Compute the optimal trajectory from E to E, solving a
minimum cost path problem over the enlarged CPG.

Fig. 4 a) Local reference system (O’x’y’) definition. b) Variables definition for obstacle avoidance. c) Variables definition for length calculation.
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4) Evaluate and follow the optimal trajectory for the given
feedback control sampling period.

5) Measure a new E and restart from step 2 till E is reached or
changed. If E is changed, then restart from step 1.

C. Calculation of X-Flight Reachability and Controllability

The calculation of X-flight reachability and controllability sets
over Ncpg is an important element in the determination of the CPG
arcs set. These sets can be calculated in three different phases of the
algorithm:

1) Choice of the X properties: some of them can be readily verified
on CPG nodes (e.g., properties X, and ), others have impact on the
solution of problem (11);

2) Solution of problem (11): if this is not solvable for the pair of
nodes (E;, E;), then the (i, j) arc is not included in the CPG.

3) On the basis of a check of ¥ admissibility in A. Nonadmissible
arcs are a-posteriori removed from the CPG.

IV. Piecewise Polynomial Flight Paths
in Constrained Environments

One of the most natural choices for flight trajectory segments
parameterization in 2-D or 3-D spaces is the assumption of /-th order
polynomial functions defined on a canonical basis. We have

1
0, 5 (5) 2 {s(r) — i =3 b
i=0
€ [to, tf], 8= (8ir-s 5xn‘i)T8 = (51T .. S!T))T e Q

If A setis 2-D (n = 2) and, for the sake of simplicity, we assume
t=x(p = (I 4+ 1)), the flight trajectory segments can be expressed
as a y'(x') function in a suitable local (O’, x', y’) reference system
(see Fig. 4a):

Oy, (8) = {y(x) = 8x7 . 48, 1 x+ 8,0 x € [x0. x,].6 € Q
C R, y(xp) = YO’y(X_f) = sty(xo) = )"09).’(xf) = )']fv)} (13)
Equalities y(x) = yo, y(xs) =y, y(xo) = Yo, Y(xy) = y; can be

readily converted into the following linear constraints in view of a
formulation for problem (11):

8
xh! xh? | :
p—1 p—2 1 82
s xf xf T
8=
-7 (p=2xt7 ... 1 0 P
—1
(p—Dx2 (p-2x7 .1 0]| ¢
J 81)
Yo
Yy
=" =t (14)
Yo
Yy

If X, property is also requested in a discrete number N, of points
along the trajectory: |(d?y/dx?)(x;)| < ¥ x; € [xg, x5, i=1,..., N,
additional linear inequality constraints arise:

ALS
(P=Dp-2" (p=2(p-3)x" .. 1 0 0

. (P-Dp-2x%7 (p-(p-3)%* ... 1 0 0
(P=D@-2xf," (p=2D(p=3," ... 1 0 0
5, 5
5, k

X| o | SE| .| =b) 15)
8,1
51 L

Finally, the obstacle avoidance requirements can be approximated
with a finite number of linear inequalities imposing that, in the
(0, x',y") reference system, y’ evaluated on a discrete set of N,
points has to be above (or below) the obstacle boundary (See Fig. 4b).
We have

8
P p—1 2 1
bt ] X7 X s
xb X! 2 ox 1 2
ne __ 2 2
Al ==+ ..
s
P p—1 2 p—l1
XN, XN, Xy, v, 1 §
V4
Vb1
Vb2
<%£| ... | =b] (16)
YbN,

If we assume that cost is proportional to length, the cost function
can be converted into a quadratic function of § parameters by
approximating the flight path with a sequence of discrete linear
segments, as shown in Fig. 4c. In this case the square of length L. can
be rewritten as

M M
L= "d?=) d+d=dld +dld=c+8HHS (17)

k=1 k=1
where
dk:[dxk]:[xkﬂ—xk} (18)
dy; Yir1 — Yk
c is a constant depending on the choice of (xy, ..., x4 ), and d, can
be expressed as a linear function of §:
- d,,
d,=
L dyy
[ = T x—x 1
-1 -1 —2 -2
L X1 — Xy X1 — Xy Xy — Xy 1
8
8
X =H} (19)
8[)—1
8y

Denoting with Q = H'H > 0 a positive semidefinite symmetric
matrix in  RP*?,  with A, =[A7 A/T|T e RwP, b=
(6 b/T)" e RY, Ay € R"=*P, by, € R" matrices defining linear
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inequality and equality constraints, problem (11) is converted into
the following quadratic cost optimization problem that is efficiently
solved using quadratic programming (QP) algorithms [31]:

W, = ?D%HSTQS s.t. (20a)
j = 1min

A8 < by (20b)

ApS = by (20¢)

If A set is 3-D (n = 3) assuming, for the sake of simplicity, that
t = x we have:

o (a)é{ Y | [ S T S 8 |
Foty 2(%) Fxl 4 & L S &y, |

x € [xp, x7], 6 € Q SR, y(xp) = o, ¥(xp)

= yf»Z(xo) = ZOvZ(xf) = Zf,).’(xo) = )"0»)"()51')
=Yy, 2(x0) = 20, 2(xp) :Z.f} €2y

Adopting the same machinery as for the 2-D case, it is possible to
convert problem (11) into a QP problem (20).

V. Simulation Examples

To show the practical capabilities of the proposed technique,
three different scenarios are considered. A first 2-D example with
two circular no-fly zones in a rectangular A region is used to
illustrate the main application principles; a second 2-D example
with a more complex scenario represents an urban environment in
which to fly an unmanned aerial vehicle (UAV) at constant height; a
third scenario, which is an expansion of the first example, shows
how the proposed technique can be successfully applied in 3-D
problems.

A. Two-Dimensional Flight-Path Generation with Two Circular
No-Fly Zones

Consider the 2-D scenario shown in Fig. 5 with two circular no-fly
zones in a rectangular domain. To simplify the choice of the CPG

F- N EEE——— F-------A T - [ T PR B------< H
T T T T T T
' .
'
3.’:-\ ------- J{\-»UA_A_m_._A..“:;_“._4_,:%;____».,::‘.3 ,,,,,,,, {a

H H {-compatible

y [km]

. A-compatible

(s,i5)

x [km]

Fig. 5 Two-dimension A-space and obstacles. Circles represent nodes
positions, arrows in point (3, —1) represent nodes directions. A CPG node
is given by a A-compatible combination of one position with one
direction.

nodes we assume that pairs (s;,$;) are determined by the com-
binations of 115 points marked with circles in Fig. 5, with a discrete
set of 36 equally spaced directions represented with a star of arrows
centered in point (3, —1). Some of the nodes are uniformly dis-
tributed in the clear area, others on the no-fly zones contours. This
choice produces a set of N = 115 x 36 = 4140 nodes. The number
of arcs to have a complete graph wouldbe N x (N — 1) if we exclude
autoconnections. However, some of the (s;, §;) pairs turn out to be
non-A-compatible with the given domain. A further reduction of the
number of arcs is obtained applying the following X-properties:
1) dy(s;, 5;) <5 km for all i, j: the set of nodes reachable with one
arc of polynomial from s; is composed of nodes s; falling within
a 5 km radius circle centered in s;. 2) |tan~!(dy/dx|;)—
tan~' (dy/dx|;)| <70 deg. Trajectory direction at node i should
not differ from that at node j more that 70 deg in absolute value.

With the application of the earlier mentioned rules only about
300 thousand arcs of the possible 17 x 10° are included in Y¢pg for
all the three cases considered:

1) Case 1: use of cubic polynomials to connectnodes [/ = 3, p = 4
in Eq. (12)]: this choice does not leave degrees of freedom for cost
minimization Eq. (20) and for additional geometrical requirements.
The § parameters are readily obtained by the solution of Eq. (20c).
Nonadmissible arcs are identified a-posteriori checking the flight
trajectories admissibility by means of a numerical inspection (see
Fig. 6a).

2) Case 2: sixth order polynomials to connect nodes (/ =6,
p = 7). Connection length is minimized, and a 300 m minimum
radius of curvature is required (see Fig. 6b).

3) Case 3: same as case 2 without constraints on the radius of
curvature (see Fig. 6¢).

Figure 7 shows the results obtained applying the proposed
algorithm to find trajectories connecting three different starting
nodes (x; =-2, y;=—1, ¢y, =10 deg), (x; =-2, y; =-1,
¥, =110 deg), (x;, = -2, y; =—1, ¥, =160 deg) to the same
terminal node (x, =3, y, =3, ¥, = 10 deg).

The generation of the CPG on a Core 2 Duo processor PC takes
about half an hour for the case of cubic polynomials whereas the
optimal path can be computed in less than 100 ms with nonoptimized
codes in the MATLAB environment. The QP problems are solved
using an active set strategy also known as a projection method
implemented in the MATLAB Optimization Toolbox [31]. Table 1
shows the optimal path lengths obtained for the three cases 1,2, and 3.

The use of polynomial functions having orders higher than sixth
does not produce significant improvements in terms of trajectory
length for this case study. It is worth to notice that, if the polynomial
order is too high, numerical problems may arise in the solution of the
QP problems which can be partially solved using an orthonormal
basis.

An analysis of the computational cost vs the polynomial order
revealed that the effort for the construction of the CPG increases
of a factor of about five when passing from cubic to sixth order
polynomials. Such a large factor is mainly due to the fact that,
with cubic polynomials, optimization problem (11) degenerates
into the solution of a linear system. On the other hand, the use of
tenth order polynomials almost doubles the computational time
compared with fourth order polynomials. However, these are not
general rules because much of the computational effort is related
to the choice of other parameters and to the numerical imple-
mentation of the algorithm. On the other hand, minimum cost path
search on the CPG is independent of the polynomial order
adopted.

B. Unmanned Aerial Vehicle Flight-Path Generation
in Urban Environment

A more complex scenario in terms of both obstacles density and
geometry is now considered. In particular, the urban environment
shown in Fig. 8 with buildings around which to fly a small rotor
wing UAV at a constant height is considered. The combination of
311 points marked with dots with a discrete set of 36 equally
spaced directions produces a set of N =11196 nodes. The
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Fig. 6 Generation of CPG arcs connecting (s;, §;) to (s;

+8j,)s -+« (5;,8;,) using: a) cubic polynomial functions (dashed curves are nonadmissible in A),

b) sixth order polynomial with minimum curvature radius of 300 m, c) sixth order polynomial.

Fig. 7 Optimal paths connecting three different starting nodes having the same position and different directions to the same terminal node: a) cubic
polynomials, b) sixth order polynomial with curvature radius limitation R < 300 m, c) sixth order polynomial without constraints on the curvature

radius.

following X properties are applied to obtain X-admissible arcs
in A: 1) dy(s;,5;) <200 m, 2) [tan~'(dy/dx|;) —tan‘l(dy/dx|j)|
<70 deg, 3) cubic polynomial functions to connect nodes.

With the application of these rules only 1% of all the possible arcs
connection nodes survives in the CPG.

Figure 8 shows results obtained applying the proposed algorithm
to find five trajectories connecting different points of the CPG. The
calculation of the CPG on a Core 2 Duo processor PC took about 1 h
whereas the optimal path on the graph can be computed in less than
100 ms with a nonoptimized code in the MATLAB environment.

The proposed technique was also successfully implemented in
feedback assuming that the optimal trajectory is updated every 50 m
(sampling period = 5 s, constant speed = 10 m/s) according to the
algorithm described in Sec. III.

An external disturbance was also considered in the simulation
causing a constant (x, y) position additive error of —0.1 meter per
meter both on x and y variables. This kind of disturbance can simulate
the effect of an external constant wind coming from the northeast

Table 1 Trajectory lengths obtained with different
polynomials and geometric constraints

Starting direction

Case 10 deg 110 deg 160 deg
1 7.46 7.31 8.28
2 7.00 7.30 8.19
3 7.00 7.14 8.16

causing a displacement of the UAV which is not fully compensated
by the trajectory tracking control system (see Fig. 9).

As for the computational time of the feedback trajectory
calculation, the update of the CPG and the optimal trajectory to the
target node were computed in less than 1 s at every step. The reason
for such a short time, if compared with the initial construction of the
CPG graph, is that only one node (measured E) and corresponding
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* +* + + + + + +
3+ I I E
1] S 7 . . I—I \§ | -
o TILL AL TIlg |
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m/10
Fig. 8 Two-dimensional A -space for urban environment simulations.
Five optimal trajectories connecting randomly selected CPG nodes are
shown.
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Fig. 9 Application of the proposed technique in feedback. Dashed line
is the nominal trajectory obtained at the flight beginning. Continuous
line is a trajectory updated in feedback every 50 meters assuming that an
external disturbance causes a position error of —0.1 meter per meter on
both x and y.

admissible arcs falling in the X-flight reachability set have to be
computed to enlarge the graph.

The nodes in the space domain were placed on the intersections
between streets, on the building corners, and uniformly spaced in
large clear areas. This allows making easier changes of direction and
possible flight trajectories close to buildings.

C. Three-Dimensional Flight-Path Generation Around
Solid Obstacles

As the 3-D case, a simple scenario obtained from an expansion
of simulation example described in Fig. 5 is considered. Circular
obstacles were transformed into cylinders. Trajectory segments were
required to be cubic polynomials in (x, y) variables, whereas climb
and descent flight path was obtained using piecewise linear function
in the z variable. A maximum (minimum) climb (descent) angle of +
(—) 4 deg was also assumed.

Figure 10 shows a trajectory obtained connecting three way points
corresponding tonodes (x; = —1,y; = —2,z; =0, ¢, = 150 deg),
(p=3, »=3, =03, ¥, =-50 deg), (x3=-2, y3=3,
23 =0.5, Y3 = 150 deg). The time for the CPG construction was
about 5 h, whereas the trajectory calculation from node to node takes
about 300 ms with a MATLAB nonoptimized code.

As for the choice of nodes, the same distribution used in the
simulation example was replicated on 10 layers at different
altitudes.

Point 1

T )T S S O S S
I i I i i i I I I
-3 -2 -1 0 1 2 3 4 5

VI. Conclusions

The proposed CPG algorithm is a flexible tool to compute optimal
trajectories in the presence of obstacles and no-fly zones because it
can take into account any kind of geometrical shape of nonadmissible
regions and additional geometrical constraints like the curvature
radius and the climb angle. The calculation of the CPG requires the
solution of a high number of quadratic programming problems. Once
the CPG has been obtained, the minimum length flight trajectory
connecting two arbitrary nodes of the graph can be computed within
a short time. Because the inclusion of a new measured position
direction in the core paths graphs can also be performed with a
reduced effort it is possible to think of a real-time feedback imple-
mentation for the optimal trajectory calculation.

An interesting point to be further investigated is the criteria to
choose the discrete set of CPG nodes, X-properties, and the cost
function. A proper choice of these quantities can drastically reduce
the computational burden especially for 3-D problems. The lack of
general driving criteria calls for further studies.

It is worth noticing that the proposed approach could greatly
benefit from the use of multiprocessor platforms because the CPG
arcs construction algorithm can be readily formulated as a parallel
process. Also symmetry properties can be used to reduce the
computational times.

Further developments to take into account states of the aircraft
dynamics, presence of uncertainties, and external disturbance for the
possible real-time feedback implementation are also left for future
work.
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